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Abstract The attenuation of tephra fall thickness is most
commonly estimated after contouring isolated and often
irregular field measurements into smooth isopachs, with
varying degrees of subjectivity introduced in the process.
Here, we present an explicit description of the variability
introduced into a semiempirical tephra attenuation relation.
This opens the way to fitting models to actual tephra obser-
vations through maximum likelihood estimation, rather than
using weighted least-squares estimation on the isopachs.
The method is illustrated for small-scale basaltic explosive
eruptions using a simple, but typical, data set of the actual
tephra thickness data published from the 1973 Heimaey
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eruption. Of the distributions considered to describe vari-
ability in these measurements, the lognormal performed
poorly, due to its tendency to predict a small number of
greatly over-thickened deposits. The Weibull and gamma
distributions fitted the data to a very similar degree and
produced very similar estimates for the “effective volume,”
mean wind direction, and mass/thickness attenuation rate.
The latter can be inverted to obtain an estimate of the mean
column height. The estimated wind direction, and the col-
umn height derived from the estimated thickness attenuation
parameter, agreed very well with the direct observations
made during the eruption. Augmented by a mixture frame-
work allowing for the incorporation of multiple lobes and/or
vents, the model was able to identify the source and direc-
tion of tephra deposition for the 1977 Ukinrek Maars
eruptions from only the tephra thickness data.

Keywords Tephra · Ukinrek Maars · Aleatory
uncertainty · Statistical method

Introduction

One of the major hazards associated with explosive erup-
tions is the dispersal of tephra. Apart from the hazard to
aviation from fine particles suspended in the upper atmo-
sphere (Miller and Casadevall 2000), tephra hazards are
associated with its deposited depth, loading, grain size,
and electromagnetic and chemical properties. Tephra fall
may cause respiratory illness, damage to buildings and
storm-water infrastructure, render roads impassable, disable
electrical distribution networks, contaminate water supplies,
destroy crops, kill livestock, and drastically change land-
scape stability and flood vulnerability (Baxter et al. 1981;
Heiken et al. 1995; Cronin et al. 1998; Stewart et al. 2006).
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Tephra falls may blanket many tens to thousands of square
kilometers with deposit geometry typically established by
spot analysis of thickness (or mass) and other properties
at individual sites. Rapid local redeposition of tephra via
fluvial and aeolian processes is common and, along with
compaction, means that considerable measurement error
can be introduced, increasing with time from deposition.
The spot tephra thicknesses are used to construct isopach
maps, with interpolation typically carried out by hand draw-
ing or increasingly by GIS interpolation methods. Isopachs
(contours of ash thickness) are, in turn, the basis, along with
grain-size distribution, for the most widely applied empiri-
cal methods used for estimation of volcanic eruption proper-
ties and hazard (i.e., total erupted volume, eruption column
height, and mass ejection rate; Carey and Sparks 1986;
Sparks 1986; Pyle 1989; Fierstein and Nathenson 1992;
Bonadonna et al. 1998; Sparks et al. 1997; Pyle 2000;
Sulpizio 2005). These all involve application of a mathe-
matical function representing tephra attenuation along its
longest axis, indexed by a small number of parameters,
which is fitted to the data using a least-squares approach.

Tephra dispersion and attenuation are also estimated
using numerical models based on advection–diffusion
equations, such as HAZMAP (Macedonio et al. 1988;
Barberi et al. 1990), ASHFALL (Hurst and Turner 1999),
Tephra 2 (Connor et al. 2001; Bonadonna et al. 2005),
or FALL3D (Costa et al. 2006). While these can be used
for hazard forecasting as part of a Monte Carlo proce-
dure along with probabilistic models of eruption size and
meteorological conditions (Hurst and Smith 2004;
Bonadonna et al. 2005; Costa et al. 2009), the inverse prob-
lem is less amenable due to difficulty in finding the optimal
fit (Connor and Connor 2006). Approaches to inverting
the observed tephra dispersal to estimate the eruptive
parameters usually use a specified wind profile (e.g., Scollo
et al. 2007, 2008; Kratzmann et al. 2010), neglect wind
(e.g., Volentik et al. 2010), or apply an exogenously speci-
fied average (e.g., Pfeiffer et al. 2005; Johnston et al. 2012),
and often fix other parameters as well. The parameters
being inverted for are either specified in an experimental
design, or optimized in a “one-at-a-time” (Johnston et al.
2012) or downhill simplex scheme (Connor and Connor
2006). There is no objective measure of “best fit”; typically,
some form of weighted least-squares error (Costa et al.
2009) is minimized. The results are that the solutions are
possibly nonoptimum, not least due to leaving wind out
of the design, and can be nonunique (Pfeiffer et al. 2005;
Scollo et al. 2007; Kratzmann et al. 2010; Bonasia et al.
2010; Volentik et al. 2010; Johnston et al. 2012) particularly
for relatively sparse deposit data, due to the dependencies
among the parameters involved.

For modeling tephra fall attenuation from single erup-
tions, a compromise between the simple tephra attenuation

models and the numerical simulations is provided by the
class of “semiempirical models.” These include the model
of Gonzalez-Mellado and De la Cruz-Reyna (2010), which
treats the eruptive volume as a parameter, with a wind-based
radial dependence term. However, the suggested fitting pro-
cedure was via estimated isopachs. Rhoades et al. (2002)
examined a data set of multiple eruptions from Taupo Vol-
cano, thus incorporating volume as a variable and develop-
ing a linear relationship between the logarithms of thickness
and volume, modulated by an elliptical term for wind. The
slope and intercept, and the wind-based terms were all esti-
mated along with their variances. The result was used by
Bebbington et al. (2008) to produce a probabilistic tephra
hazard model for Mt Taranaki.

The advantage of the model of Rhoades et al. (2002)
is that it is simple to invert, both to calculate a volume–
frequency curve (Bebbington et al. 2008), and to estimate
the relative likelihood of a tephra being sourced from dif-
ferent vents (Bebbington and Cronin 2011). The potential
disadvantage of this approach is that fitting is done by
using linear regression on the logarithm of the thickness.
Hence, the variability in the deposited thickness at a given
point is assumed to be lognormally distributed. It is not
known whether this is the most accurate representation of
variability in tephra deposition. Obviously, the distribution
must be limited to nonnegative values, but this leaves open
many questions regarding its skewness and tail character-
istics. For example, the lognormal distribution has a thick
tail, implying that very large amounts of overthickening
can occur at large distances from the volcano. Other pos-
sible alternatives to describe tephra fall attenuation are the
Weibull (Bonadonna and Costa 2012) and gamma distribu-
tions, which are both capable of having a mode at some
positive thickness.

In this paper, we will use the semiempirical model(s) of
Gonzalez-Mellado and De la Cruz-Reyna (2010) to estimate
the mean tephra thickness to be expected at a given dis-
tance and azimuth from an eruption vent, combined with a
variety of distributions for the actual thickness given this
mean. We will show how the parameters in the semiem-
pirical model and the variance in this “error distribution”
can be simultaneously estimated using maximum likelihood
methods. In a significant difference from common practice,
all our estimation is based on the actual individual tephra
thickness measurements, rather than on the derived
isopachs. For this purpose, the 1973 Heimaey eruption
(Thorarinsson et al. 1973) is used as an example of explosive
basaltic (Strombolian) eruption, because it was observed
throughout and its published isopach and thickness data are
very typical (Self et al. 1974), in being both sparse and not
entirely consistent with drawn isopachs.

The remainder of the paper is structured as follows: we
will next review the case study data set, that of the 1973
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Heimaey eruption (Thorarinsson et al. 1973), and construct
a nonparametric estimate of the variability in the deposited
thickness. The model(s) are developed in the following sec-
tion, with the more mathematical details relegated to the
Appendix. The results of fitting the models to the Heimaey
data are shown in the “Results” section, along with an
assessment of how well the various models explain the
data and its variation. A sensitivity analysis is presented in
section “Sensitivity analyses.” The model is extended in sec-
tion “Multiple lobes and/or vents” to tackle the problem of
identifying multiple lobes from possibly multiple sources,
illustrated on data from the 1977 Ukinrek Maars eruption.
This is followed by discussion.

Data

In order to determine a suitable distribution for the vari-
ability in deposited tephra thickness for basaltic explosive
eruptions, a data set is required without the complications of
multiple lobes or vents, thus the selection of the eruption on
24 January 1973 eruption of Eldfell on Heimaey, Iceland.
The tephra dispersal data (Self et al. 1974) were collected
from 24 January to 1 February 1973. Winds were blow-
ing predominantly to the northwest and the northeast during
the eruption, according to measurements from the Icelandic

Meteorological Service at the Storhofdi Lighthouse. While
the former wind direction resulted in measurable deposition
on land, an estimated 65 % of the tephra deposited under the
influence of the westerly winds fell into the sea and were
not measured. The resulting single-lobe pattern is ideal for
this study. The data consist of observed thicknesses at 36
locations, ranging between 3 and 450 cm, as shown in Fig. 1.

The actual thickness observed at any given point differs
from an “ideal” thickness due to small random effects of
wind strength and direction, but primarily due to local redis-
tribution of fallen tephra by wind, rain, and slope processes
(especially in highly irregular topography). This difference
can be termed the “sampling error,” which describes the
inherent variability of the observations. The absolute error
(or residual) at a point i is Ai = Oi − Ei , where Oi is
the observed thickness at location i, and Ei is the expected
thickness at location i. However, a multiplicative error struc-
ture is assumed here—such that the size of the error is
proportional to the expected thickness. In other words, the
focus is the “relative error” Ai/Ei ≥ −1. For reasons that
will become obvious, it is shifted to become nonnegative,
and the (shifted) relative error is considered Ri = Ai/Ei +
1 = Oi/Ei . Thus, an observation that aligns exactly with
the expectation has a relative error of one. Values less than
or greater than one indicate under- or over-thickening of the
tephra, respectively.

Fig. 1 Heimaey: Observed
thickness (in centimeter) and
locations. The vent is indicated
by the triangle
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The relative errors are all defined in terms of an expected
value that is to be calculated from a parametric model. As
the error is thus dependent on the model, and selection
amongst multiple models is required, a model indepen-
dent (nonparametric) of the error distribution is initially
estimated in order to discover the candidate parametric
distributions that might be suitable.

A leave-one-out cross-validation approach to estimating
the expected thickness was applied. The observation at loca-
tion i is omitted, and a surface is fitted to the remaining 35
data points using a triangulated C1-continuous interpolating
surface. The value of this surface at location i is taken to be
Ei . This is repeated for all locations inside the convex hull
of the data to obtain relative errors, as shown by the his-
togram in Fig. 2a. It is clear that the relative sampling error
is nonnegative and right-skewed, with a mode less than one.
If we denote our relative error by R, then the lognormal
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ω

)
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distributions are good exemplars of distributions that can
be used to model such errors. All have a location param-
eter (μ, ν, ω) and a shape parameter (σ, η, κ). As can be
seen from (1) to (3), they differ mainly in the rate at which
the tail decays. The gamma decays much more rapidly
than the lognormal, and the Weibull may decay faster or
slower than the gamma, depending on the value of the shape
parameter η. Fitting these distributions to the nonparametric
relative errors via maximum likelihood estimation produces
the densities superimposed on the data histogram in Fig. 2a.

The lognormal density is less faithful to the data than
the other two candidates, due primarily to the righthand tail
of the data not being thick enough, and this is quantified
more clearly in Fig. 2b. The maximum distance between the
data (the step function) and the curve is the Kolmogorov–
Smirnov statistic for the distance between distributions,
with values of 0.156, 0.122, and 0.124 for the lognormal,
Weibull, and gamma distributions, respectively. While none
of these are large enough (> 0.264) to reject the distribu-
tion at the 5 % significance level, they do indicate that the
Weibull and gamma distributions both fit the data well, and
the lognormal slightly less well.
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Fig. 2 Nonparametric relative sampling error. a Density. b
Distribution

Methodology

The nonparametric relative errors have been shown to be
consistent with the Weibull and gamma, and perhaps log-
normal, distributions. Hence, these error distributions were
embedded in the framework of a tephra dispersal model.
For the reasons outlined in the “intro” section, an empirical
model is required that has the facility to include possi-
ble wind effect. Since the Rhoades et al. (2002) model
assumes a lognormal error distribution, which may not be
the best description, the model of Gonzalez-Mellado and
De la Cruz-Reyna (2010) is preferred here.

The basic form of the Gonzalez-Mellado and De la Cruz-
Reyna (2010) model is that the expected tephra fall deposit
thickness is the product of a power-law decay with dis-
tance (Bonadonna and Houghton 2005) and a noncircular
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term based on wind direction. A power-law decay with dis-
tance was preferred to an exponential primarily because
it fits well in both the near and far field. It has also
been shown that a simple exponential decay may not well
describe well-preserved tephra deposits, due to distal ash
settling differently (Sparks et al. 1992; Rose 1993). Using
the three exponential segments necessary to model accu-
rately the thinning of well-preserved deposits (Bonadonna
and Houghton 2005) is also undesirable, because it would
add another four parameters to the estimation problem.

The attenuation relation by Gonzalez-Mellado and De la
Cruz-Reyna (2010) is

T (r, U, θ) = γ exp [−βUr(1 − cos θ)] r−α, (4)

where T is the tephra thickness (in centimeter) at a distance
from the vent r (in kilometer) in direction θ relative to the
wind direction. If the supposed wind direction is given by φ,
and that the direction from the vent to the deposit location is
ξ (both measured in degrees anticlockwise from East), then
θ = ξ - φ, and (4) becomes

T (r, ξ) = γ exp{−βUr[1 − cos(ξ − φ)]}r−α (5)

Note that the wind direction φ and speed U (km h−1) are
considered as the mean (with respect to the eruption rate)
values of the predominant wind, and as such will be esti-
mated from the data (the left-hand side of the equation). The
other parameters to be estimated are α, β and γ . The latter
is the expected thickness at 1 km from the vent along the
dispersal axis, which is a proxy for the eruption size. The
dimensionless attenuation parameter α is nonnegative, and
β is inversely related to the diffusion coefficient, and thus
can be regarded as a proxy for the grain-size distribution.
However, there is an identifiability issue, in that βU cannot
be separately estimated, and so βU is considered as a single
variable, reducing the number of parameters to be estimated
to four. Moreover, βU (along with φ) is also a nuisance
parameter, i.e., one that may or may not be present in the
model. If there is no significant wind, then U = 0 and (5)
reduces to

T (r, ξ) = γ r−α, (6)

with only two parameters to be estimated.
Gonzalez-Mellado and De la Cruz-Reyna (2010) fitted

their model to isopach data, thus avoiding the question of
sampling error. However, the actual observed tephra thick-
nesses and locations are used in our formulation, rather
than isopachs, and thus sampling error must be included
in our fitting. By incorporating an error distribution, the
model can be fitted using standard statistical maximum like-
lihood estimation (MLE) methods. This avoids the necessity
of choosing a weighting scheme in the least-squares mini-
mization procedure. The choice of such a weighting scheme

depends on the estimated uncertainties (Costa et al. 2009)
and can strongly affect the results. In effect, the MLE
estimation treats the uncertainties explicitly, rather than
approximately.

The error distributions are incorporated by treating the
tephra thickness formula (5) or (6) as a link function giv-
ing the mean of the thickness distribution at the location
(r, ξ). The shape parameter of the distribution (σ for the
lognormal, η for the Weibull, κ for the gamma) becomes an
additional parameter to be estimated. The likelihood formu-
lae are derived in the Appendix. In each case, we see that
the coefficient of variation (standard deviation divided by
mean) is a function solely of the shape parameter. In other
words, the coefficient of variation is a constant in all direc-
tions and at all distances, which is exactly the multiplicative
error structure we require.

Two baseline models (with and without wind) and three
error distributions makes for a total of six models to be fit-
ted. This leaves the question of which model best describes
the data. As all the error distributions have the same num-
ber of parameters, this can be decided on the basis of the
likelihood. Model (6) is nested within the model (5), and
so the model with more parameters can be justified using
a likelihood ratio test. A shorthand for this is the Akaike
Information Criterion (Akaike 1977):

AIC = 2p − 2 log L, (7)

where p is the number of parameters, and log L the log like-
lihood. Smaller Akaike Information Criterions (AICs) indi-
cate better models, with the effect of additional parameters
being compensated for in order to avoid over-fitting.

Results

Table 1 shows the estimated parameters from fitting each
of the six possible models to the Heimaey tephra thick-
ness data. To allow the shape parameters of the three
error distributions to be meaningfully compared, they have
been converted into a coefficient of variation (CV, the
standard deviation divided by the mean), using Eqs. 12,
14, and 16 given in the Appendix. We see that the esti-
mated parameters are consistent for all distributions. In
particular, the estimated wind direction φ is approxi-
mately NNW, in agreement with the meteorological data
(Self et al. 1974).

The Weibull distribution has the smallest AIC, indicating
that it is the best of the three distributions, but the gamma
distribution is not significantly worse. However, the differ-
ence in AICs is sufficient to reject the lognormal distribution
as a description of the sampling error. Moreover, the lognor-
mal distribution systematically overestimates the volume of
the eruption (γ ) with respect to the other two distributions.
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Table 1 Estimated parameters of the models

Baseline model Parameter Error distribution

lognormal Weibull gamma

(6) γ 54.0 48.4 48.7

α 2.00 1.97 1.97

CV 1.18 0.70 0.78

log L −179.4 −175.5 −176.3

AIC 364.8 357.0 358.5

(5) γ 83.8 71.0 76.0

βU 1.42 1.48 1.43

φ 114.1 125.3 119.2

α 1.61 1.88 1.75

CV 0.59 0.45 0.49

log L −160.1 −157.0 −157.9

AIC 330.2 324.0 325.7

It also has the highest CV, indicating a poorer absolute fit.
Note that the CV decreases for all the error distributions
with the introduction of wind effects. There is definitely an

improvement from the model (6) without wind, compared
to the model (5) incorporating wind. The chi-squared (2
degrees of freedom) statistic of twice the difference in the
loglikelihood ratios is significant for all three error distribu-
tions, with P values less than 10−8 indicating that the model
fit is significantly improved by including wind effects.

The AIC and likelihood ratio test tell us which model
is better, but the question of whether the model is a good
description of the data can only be answered by resid-
ual analysis, i.e., by examining the discrepancy between
the data and the model. For a first visual inspection,
Fig. 3 shows the residual error (observation divided by the
expected mean from the model) at each observation loca-
tion. The means and standard deviations of the residual
errors are calculated in Table 2. We see that the residuals
are much closer to one (smaller standard deviation) under
the model (5). The lognormal overestimates thicknesses (the
mean residual, or ratio of observed to estimated, is less than
one), for reasons discussed above, while the Weibull and the
gamma error distributions appear to be unbiased.

Although some of the residuals from our models are
large, the aim is to explicitly quantify this variation.
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Fig. 3 Relative errors. The top row is the model (6) without wind; the bottom row, the model (5) with wind. The columns are for the lognormal,
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Table 2 Residual error statistics

Baseline model Error distribution Mean SD

(6) lognormal 0.899 0.599

Weibull 1.004 0.669

gamma 1.000 0.666

(5) lognormal 0.978 0.461

Weibull 1.001 0.458

gamma 1.000 0.463

Whether the residuals are incompatible with the model can
be evaluated by obtaining confidence bounds via Monte
Carlo simulation. This uses repeated random sampling from
the model with the estimated parameters to simulate pos-
sible thicknesses consistent with the model at each loca-
tion. Figure 4 shows the ratio between the simulated and
observed thicknesses. A perfect fit is given by the horizon-
tal line, which can be compared with the 90 % point-wise
coverage band. For the model (6) without wind, there is
a systematic trend with the ratio decreasing with observed
thickness. This indicates that small thicknesses are being
overfitted, and large thicknesses are underfitted. On the
other hand, the baseline model (5) does not exhibit this
behavior; it also shows generally tighter bounds. All three

error distributions exhibit behavior consistent with the data,
although it should be noted that the thick tail (producing
occasional very large relative residuals) in the lognormal
distribution is not being examined by this procedure.

Sensitivity analyses

The fitted model may be sensitive to either parameters or
the data. We will investigate the latter by Monte Carlo
simulation and refitting. The Heimaey data consist of 36
tephra thicknesses in the fall direction. We randomly delete
N = 3, 6, 12, or 24 of these measurements and refit the
best model (5) with Weibull error distribution. The results
are shown in Table 3. We see that the estimates are con-
sistent in that the means vary little for N ≤ 12, and that
the variability increases with decreasing amounts of data (N
increasing). Deleting two thirds of the data (N = 24) is
too much for the model, inducing a tendency to find more
eccentric (higher βU ) lobes in variable directions. It appears
that a number of the simulations retain locations suggest-
ing different fall directions, or possibly more than one such
direction, with consequent instability in the other (coupled)
parameters. The error distributions in the parameters are rea-
sonably symmetric, apart from α, as would be expected. We
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Fig. 4 Monte Carlo residual bounds for tephra thickness. The top row is the model (6) without wind; bottom row, the model (5) with wind. The
columns are for the lognormal, Weibull, and gamma error distributions reading left to right. Medians are shown by the dashed lines, 90 % bounds
by the dotted lines
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Table 3 Parameter estimates
for the sensitivity analysis on
Heimaey data. Errors are 1σ

No. of data Parameter

deleted, N γ βU φ α

3 71.3 ± 2.5 1.48 ± 0.07 125.0 ± 4.3 1.88 ± 0.08

6 71.8 ± 4.6 1.49 ± 0.12 124.8 ± 6.9 1.87 ± 0.14

12 72.2 ± 6.0 1.51 ± 0.19 125.9 ± 9.4 1.88 ± 0.19

24 81.4 ± 22.1 1.84 ± 1.04 124.0 ± 19.2 1.85 ± 0.44

can conclude that the model is robust to the amount of data,
provided that the data represent the fall pattern correctly; as
ever, the garbage-in-garbage-out principle applies.

The sensitivity to the individual parameters is investi-
gated following an idea analogous to that of Scollo et al.
(2008). Starting at the optimum solution, we vary each
parameter, one at a time, in the best model of (5) with
Weibull error distribution. Figure 5 shows the resulting
likelihoods, demonstrating that the parameter values are
robustly estimated.

Multiple lobes and/or vents

The statistical model readily lends itself to investigation
of prehistorical eruptions, allowing us to identify multiple

lobes, vents, and eruptions through a mixture framework. In
order to demonstrate this, we will briefly analyze the tephra
dispersal from the Ukinrek Maars eruption of March and
April 1977.

We will suppose that we have m vents, and that the ith
vent has ni components (lobes). The model (4) to prescribe
the thickness at a given location then becomes

T (r1, . . . , rm, U, θ1, . . . , θm)

= γ

m∑
i=1

ni∑
j=1

Pi,j exp
[−{βU}i,j ri (1 − cos θi)

]
r
−αi,j

i , (8)

where (ri , θi) is the distance and azimuth (relative to the
prevailing wind direction) to the location from the ith vent,
and each component has its own α and βU parameters.

Fig. 5 Sensitivity analysis on
the estimated parameters. The
maximum likelihood estimates
are shown by the dashed lines
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There is only one γ as the differing sizes of the com-
ponents are identified through the presence of the mixing
distribution Pi,j , where

∑
i

∑
j Pi,j = 1. This is equiva-

lent to summing over components with γi,j = γPi,j . The
models can then be fitted to the data using maximum like-
lihood, in a minor elaboration of the technique described
above.

The tephra thickness data shown in Fig. 6 are taken from
Self et al. (1980). Note that we have deleted one thick-
ness measurement of 37 cm approximately 1 km southeast
of the East Maar, as it is the only measurement from that
described and partly sketched southerly tephra lobe in Self
et al. (1980). It is not possible to fit a component with
four parameters to a single observation. High-level winds
distributing fine tephra to distal areas were apparently not
related to the proximal tephra distribution which was con-
trolled only by the low-level winds under 2 km of altitude
(Kienle et al. 1980). The West Maar erupted first (30–31
March 1977), with two tephra fall units directed to the SE
and SW, overlain by surge deposits, which are thickest on
the WSW edge of the crater (Kienle et al. 1980). The map
of the deposits is in Self et al. (1980), which includes a
slightly different chronology to that in Kienle et al. (1980).
The eruption of the East Maar probably began on 1 April
(Self et al. 1980), with tephra fallout to the NNE and NNW,
with further eruptions on 5 April dispersing tephra to the
NW and N. Later, Strombolian phases of eruptions from 7–
9 April produced tephra fall lobes to the NW, E, and SSE

(Kienle et al. 1980; Self et al. 1980). So, in mixture model
terms, the source and direction of the observed components
are

West Maar

W1: SE (fall)
W2: SW-WSW (surge plus fall)

East Maar

E1: NNE (fall 2 April)
E2: NW-NNW (fall 1 April, 5 April, and 7–9 April)
E3: WNW (surges throughout eruption)
E4: E (7–9 April)
E5: SSE (7–9 April)

As we have no useable data between SW and ESE, we
expect that we will be unable to detect components W1, W2,
and E5. Hence, we will limit ourselves to checking for, at
most, four components.

Recall that the number of parameters in the distribution
is 4NC , where NC is the number of components. This is
too many to estimate from the 24 data available (Fig. 6).
Hence, we will adopt the earlier idea of fitting a surface to
the observed data using a triangulated C1-continuous inter-
polating surface, overlaying a grid (at a spacing of 0.25 km)
and using the interpolated thicknesses at the grid points
(see Fig. 6) as our fitting data. Note that we restrict the
grid within the convex hull of the observed data to avoid

Fig. 6 Ukinrek Maars:
Observed thickness (in
centimeter) and locations are in
large type. Interpolated
thicknesses (see text) are in
small type. The vents are
indicated
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extrapolation. This results in c. 150 data, enough to fit the
required models.

For the purposes of illustration, we will only present the
Weibull error distribution results. The lognormal has already
been shown to fit poorly, and while the gamma distribution
is a viable alternative for one or two components, it does
increasingly poorly relative to the Weibull as the number of
components increases. This is understandable, as the thin-
ner tail of the Weibull better describes the reduced sampling
variation as excess thicknesses are ascribed to multiple com-
ponents. Hence, the preferred model, as identified by AIC,
will give the number of components (on each Maar). As the
East Maar is approximately 16 times the volume of the West
Maar (Kienle et al. 1980), we have required at least one
component on the East Maar.

The results are shown in Table 4. The best model is
clearly that with one component on West Maar (S), and
three on East Maar (E, NE and NNW), the last three of
which correspond quite closely to the sought-after E4, E1,
and E2, respectively. The West Maar component appears
to have (correctly) identified the aggregation of W1 and
W2 from the scattering opposite to the dispersal axis. This
will have been overlaid with E3. The remaining parameter
estimates are given in Table 5, although we will restrict fur-
ther comment to the preferred 1 West/3 East components
model, which is illustrated in Fig. 7. All the models assign
a minimum weighting of 65 % to the East Maar, while the
preferred model assigns 80 % weight to the East Maar. This
volume apportioning is consistent with the relative sizes of
the two maars and with the fact that the bulk of activity
was observed from the latterly erupting East maar (Kienle
et al. 1980). The decay with distance (α) and the eccen-
tricity (βU ) indicate a wide proximal fall from the West
maar, while the East maar contributes two narrower falls
(E4 and E1) and a smaller wide deposit slowly thinning
with distance (E2). Again, these are in excellent agreement
with observations (Kienle et al. 1980, Self et al. 1980). The
residual plot for the best fitting model is shown in Fig. 8;
there appear to be no systematic patterns.

Discussion

We have considered only the tephra thickness, as this is the
most common directly measured quantity. In many respects,
particularly the risk to built structures, the tephra loading
can be a more important measure. Often, thickness is con-
verted into loading by assuming an average particle bulk
density and packing density; measured values are often in
the range of 1,000 to 1,400 kg/m3 (Cronin et al. 1998). It
is possible that a method similar to that above could be
developed to model tephra loading directly, provided that an
attenuation model can be formulated.

Gonzalez-Mellado and De la Cruz-Reyna (2010) derived
a number of empirical relationships based on fitting their
model (4) to 14 well-documented eruptions. In particular,
they found that

α = 2.535 − 0.051H, (9)

giving an estimate of H , the height (in kilometer) of the
eruption column. It should be borne in mind that both α

and H have uncertainties associated with them besides those
allowed for in the regression analysis, and so this relation is
an approximation at best. Of course, the attenuation parame-
ter α is also a function of total grain-size distribution, which
is linked to column height. A second relationship between
β and the column height,

1

2β
=

{
114.407 − 4.189H H < 15.5,

−770.17 + 52.822H H ≥ 15.5,
(10)

which might otherwise allow us to separate the wind speed
U from βU , appears to be an artifact of the inclusion of
the Pinatubo-2 eruption, with its column height of 43 km.
Without this point, a quadratic regression has an adjusted
R2 of zero, indicating no relationship.

For Heimaey, calculating H from the estimated α via (9),
using the example of the Weibull error distribution and base-
line model (5) which had the best AIC, yields an estimated
column height of H = 2.44 km, in line with the observed 2–
3 km (Wilson et al. 1978). We note that, in this instance, the

Table 4 Ukinrek models,
AICs, and fall directions Model (no. of components) AIC γ Directions (deg. anticlockwise from E)

West Maar East Maar West Maar East Maar

0 2 570.0 39.5 216, 39

1 1 538.9 44.8 90 30

0 3 514.5 78.7 27, 158, 96

1 2 498.9 67.0 94 12, 52

2 1 516.2 66.0 89, 42 18

1 3 468.9 74.0 264 12, 52, 113

2 2 477.0 78.3 297, 98 12, 52

0 4 484.9 78.7 15, 157, 99, 55
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Table 5 Ukinrek models, estimated parameters

Model (no. of components) P βU α

West Maar East Maar West Maar East Maar West Maar East Maar West Maar East Maar

0 2 0.64, 0.36 0.1, 3.7 1.9, 2.3

1 1 0.28 0.72 0.3 1.8 1.5 2.5

0 3 0.46, 0.46, 0.08 1.9, 4.6, 0.9 2.6, 2.9, 0.4

1 2 0.21 0.56, 0.23 0.4 4.8, 5.2 1.6 3.1, 1.7

2 1 0.20, 0.15 0.65 0.4, 10.5 4.0 1.5, 1.0 3.2

1 3 0.20 0.51, 0.21, 0.07 0.2 5.0, 6.1, 0.6 3.2 3.1, 1.7, 0.4

2 2 0.23, 0.06 0.49, 0.21 0.3, 0.6 5.3, 5.6 2.9, 0.3 3.2, 1.7

0 4 0.42, 0.35, 0.13, 0.10 3.4, 4.5, 0.7, 9.9 2.7, 2.7, 1.1, 1.3

particle density is near-uniform across the deposit (mean ±
standard deviation of 2.08 ± 0.29 g/cm3 from 99 measure-
ments). Hence, the isopachs are a constant function of the
isopleths which are usually used to estimate column height.

As the Heimaey eruption was observed, we have the aver-
age wind velocity to the NW, which seems to have been
on the order of 50 km/h (Self et al. 1974). From the esti-
mated βU = 1.48, this gives a value of β = 0.03 and, thus,
an “effective diffusion coefficient” (Gonzalez-Mellado and
De la Cruz-Reyna 2010) D = 17 km2/h = 4,700 m2/s,
which appears reasonable.

The relation (9) appears to break down for the Ukinrek
model with α’s greater than 2.535 (negative column height),
or small enough (α = 0.3) to correspond to a 44-km column
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Fig. 7 Ukinrek Maars: The 3-cm isocontours for each component
are shown. WM1 is the West Maar component, while the East Maar
components are denoted EM1–EM3, as detailed in Tables 4 and 5.
Observed thickness (in centimeter) and locations are also shown. The
vents are indicated

height. The observed column heights (Kienle et al. 1980) of
6.5 km (West Maar) and 3.5 km (East Maar) would require
α’s of 2.2 and 2.4, respectively. We note that the less com-
plex models in Table 5 have α’s much closer to these ideal
values. Thus, the empirical relation (9) appears more likely
to be valid where the deposit is a single lobe correspond-
ing to the maximum column height, which are the condi-
tions under which it was derived by Gonzalez-Mellado and
De la Cruz-Reyna (2010). The higher βU values observed
for some of the components in Table 5 may reflect the gen-
erally higher wind velocity environment at Ukinrek, wind
shear causing bent-over plumes, or directional control in the
individual eruptions.

The diffusion coefficient is also an empirical para-
meter in such “semianalytical” models such as TEPHRA2
and HAZMAP, “describing complex plume and atmos-
pheric processes not captured in the physical model”
(Volentik et al. 2010). Hence, the difference in “physical
reality” between physical and statistical models is one of
degree rather than a hard boundary. The advantage of the
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Fig. 8 Ukinrek: Relative errors at measurement locations for the 1
West/3 East components model. The text is scaled by size of error. The
vents are indicated



738, Page 12 of 14 Bull Volcanol (2013) 75:738

statistical model is that there is an objective, consistent
method of parameter estimation through maximum likeli-
hood. The advantage of the physical model is that “feasible,”
but perhaps not consistent, estimates of column height and
mass eruption rate can be obtained, provided that grain-size
information and/or eruption duration is also available.

Heimaey and Ukinrek are typical examples of basaltic
systems, scaled appropriately for the typical eruption
types occurring in monogenetic volcanic fields. Hence, the
lessons from this study can be carried over to reconstruc-
tion of parameters of tephra falls in prehistoric eruptions
in such fields, after allowance is made for tephra set-
tling and compaction. The successful inferences made from
the very sparse (and partially incomplete) thickness data
for Ukinrek is particularly encouraging, showing that this
approach is applicable to the typical quality of data obtain-
able through paleo-volcanology studies. In particular, the
statistical model for tephra variation provides a platform
for maximum likelihood estimation and, hence, the use
of penalized fitting criteria such as the AIC, which per-
mits consistent estimation of the number of lobes. While
multiple tephra lobes can be inferred in complex multi-
event eruption episodes using this method, the order of
these cannot be extracted without additional stratigraphic
information. On the other hand, we can estimate erup-
tive parameters including volume and identify statisti-
cally the likely sources among multiple eruptive centers
(cf. Bebbington and Cronin 2011) and, thus, incorporate this
into hazard estimates.

In estimating the actual volume, the fact that the power
law produces an infinite thickness at r = 0 is an issue.
To get around this, we could possibly follow the lead of
Rhoades et al. (2002) and replace r−α by (r + δγ )−α ,
which is dimensionally correct, and gives a finite thickness
at r = 0, at the price of adding one more parameter to the
estimation problem. However, it is easier to simply exclude
the area of the crater from calculations following, in effect,
the suggestion of Bonadonna and Houghton (2005). Vol-
umes can most easily be calculated by numerical integration
of the Eq. 4, using the estimated parameters.

Conclusion

We have shown that a semiempirical model of tephra depo-
sition can be combined with an error distribution to produce
a statistical model capable of being fitted to actual measure-
ments rather than isopachs constructed from these measure-
ments. This provides a ready-made inversion formula for
the volume of the eruption and the average dispersal axis.
In addition, it can be used to forecast the distribution of
tephra at locations without data, and it provides an objective
measure of goodness of fit to the data.

Applied to the 1973 Heimaey eruption, we were able to
decisively reject the model without wind effects. The wind
direction obtained with the other model corresponds well
with the mean wind direction from the onshore wind that
deposited the measured tephra thicknesses. The estimated
attenuation parameter indicated a mean column height equal
to that observed for the eruption (Wilson et al. 1978).

Elaborating the model further in a mixture framework
enables the model to fit multiple lobes and/or vents. Applied
to the 1977 Ukinrek Maars eruption, it was able to identify
lobes in the correct direction from each vent. This has obvi-
ous utility in studying unobserved eruptions with multiple
vents.
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Appendix

Here, we derive the likelihood formulae for the various com-
binations of model and error distribution. Let T denote the
tephra thickness obtained from (5) or (6).

Lognormal distribution

Assume T ∼ lognormal (μN, σN) where μN is the location
parameter and σN is the scale parameter of the conjugate
normal distribution. Thus, μLN = exp

(
μN + σ 2

N/2
)

and

σLN =
√[

exp
(
σ 2

N

) − 1
]

exp
(
2μN + σ 2

N

)
are the lognor-

mal parameters by definition. Then, μLNi = Ti(ri , ξi ) for
the ith observation, and so μNi = log Ti − σ 2

N/2. Note that
the location parameter is no longer a constant, as it varies
for each observation.

The loglikelihood function for the complete sample i =
1, 2, . . . , n is then obtained from (1) as follows:

log L = − n

2

[
log

(
2πσ 2

N

)]
−

n∑
i=1

log Ti

−
∑n

i=1

(
log Ti − μNi

)2

2σ 2
N

, (11)

and the coefficient of variation is

CV = σLN

μLN

=
√[

exp
(
σ 2

N

) − 1
]

exp
(
2μNi + σ 2

N

)
/

exp
(
μNi + σ 2

N/2
)

=
√

exp
(
σ 2

N

) − 1. (12)
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Weibull distribution

Assume T ∼ Weibull (η, ν) where η is the shape parameter
and ν is the scale parameter. Then μW = ν� (1 + 1/η) and
σW = ν

√
� (1 + 2/η) − �2 (1 + 1/η) by definition. Thus,

μWi = Ti(ri , ξi ) for the ith observation, and νi = Ti/�(1+
1/η). Again, the scale parameter is no longer a constant, as
it varies for each observation.

The loglikelihood function for the complete sample i =
1, 2, . . . , n is then obtained from (2) as follows:

log L = n log η + (η − 1)

n∑
i=1

log Ti − η

n∑
i=1

log νi

−
n∑

i=1

(
Ti

νi

)η

, (13)

and the coefficient of variation is

CV = σW

μW

= νi

√
� (1 + 2/η) − �2 (1 + 1/η)/

(νi�(1 + 1/η))

=
√

�(1 + 2/η)

�2(1 + 1/η)
− 1. (14)

Gamma distribution

Assume T ∼ gamma (κ, ω) where κ is the shape param-
eter and ω is the scale parameter. Then μG = κω and
σG = √

κω by definition. So, μGi = Ti(ri , ξi) for the ith
observation, and ωi = Ti/κ . Again, the scale parameter is
no longer a constant.

The loglikelihood function for the complete sample i =
1, 2, . . . , n is then obtained from (3) as follows:

log L = (κ − 1)

n∑
i=1

log Ti − κ

n∑
i=1

log ωi

−n log �(κ) −
n∑

i=1

Ti

ωi

, (15)

and the coefficient of variation is

CV = σG

μG

=
√

κωi

κωi

= 1√
κ

. (16)
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